Local Error Analysis of Discontinuous Galerkin Methods for Advection-Dominated Elliptic Linear-Quadratic Optimal Control Problems
نویسندگان
چکیده
This paper analyzes the local properties of the symmetric interior penalty upwind discontinuous Galerkin method (SIPG) for the numerical solution of optimal control problems governed by linear reaction-advection-diffusion equations with distributed controls. The theoretical and numerical results presented in this paper show that for advection-dominated problems the convergence properties of the SIPG discretization can be superior to the convergence properties of stabilized finite element discretizations such as the streamline upwind Petrov Galerkin (SUPG) method. For example, we show that for a small diffusion parameter the SIPG method is optimal in the interior of the domain. This is in sharp contrast to SUPG discretizations, for which it is known that the existence of boundary layers can pollute the numerical solution of optimal control problems everywhere even into domains where the solution is smooth and, as a consequence, in general reduces the convergence rates to only first order. In order to prove the nice convergence properties of the SIPG discretization for optimal control problems, we first improve local error estimates of the SIPG discretization for single advection-dominated equations by showing that the size of the numerical boundary layer is controlled not by the mesh size but rather by the size of the diffusion parameter. As a result, for small diffusion, the boundary layers are too ”weak” to pollute the SIPG solution into domains of smoothness in optimal control problems. This favorable property of the SIPG method is due to the weak treatment of boundary conditions which is natural for discontinuous Galerkin methods, while for SUPG methods strong imposition of boundary conditions is more conventional. The importance of the weak treatment of boundary conditions for the solution of advection dominated optimal control problems with distributed controls is also supported by our numerical results.
منابع مشابه
Proof of the Local Discretization Error Estimate for the Optimal Control Problem in the Presence of Interior Layers
This “appendix” contains the proof of Theorem 5.1 in the paper D. Leykekhman and M. Heinkenschloss: Local Error Analysis of Discontinuous Galerkin Methods for Advection-Dominated Elliptic Linear-Quadratic Optimal Control Problems [1]. To facilitate readability, the beginning of Section 5 and Subsection 5.1 of [1] is repeated here. Theorem 5.1 of [1] is restated here as Corollary A.2. All refere...
متن کاملLocal Error Estimates for SUPG Solutions of Advection-Dominated Elliptic Linear-Quadratic Optimal Control Problems
We derive local error estimates for the discretization of optimal control problems governed by linear advection-diffusion partial differential equations (PDEs) using the streamline upwind/Petrov Galerkin (SUPG) stabilized finite element method. We show that if the SUPG method is used to solve optimization problems governed by an advection-dominated PDE the convergence properties of the SUPG met...
متن کاملDiscontinuous Galerkin Methods for Solving Elliptic Variational Inequalities
We study discontinuous Galerkin methods for solving elliptic variational inequalities, of both the first and second kinds. Analysis of numerous discontinuous Galerkin schemes for elliptic boundary value problems is extended to the variational inequalities. We establish a priori error estimates for the discontinuous Galerkin methods, which reach optimal order for linear elements. Results from so...
متن کاملDiscontinuous Galerkin Methods for Advection-diffusion-reaction Problems
We apply the weighted-residual approach recently introduced in [7] to derive dis-continuous Galerkin formulations for advection-diffusion-reaction problems. We devise the basic ingredients to ensure stability and optimal error estimates in suitable norms, and propose two new methods. 1. Introduction. In recent years Discontinuous Galerkin methods have become increasingly popular, and they have ...
متن کاملLow Order Discontinuous Galerkin Methods for Second Order Elliptic Problems
Abstract. We consider DG-methods for 2nd order scalar elliptic problems using piecewise affine approximation in two or three space dimensions. We prove that both the symmetric and the nonsymmetric version of the DG-method are well-posed also without penalization of the interelement solution jumps provided boundary conditions are imposed weakly. Optimal convergence is proved for sufficiently reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 50 شماره
صفحات -
تاریخ انتشار 2012